#9. Hydrogen-rich preservation solution attenuates lung ischemia-reperfusion injury after prolonged cold ischemia in a canine left lung transplant model

1) Department of Thoracic Surgery, Kyoto University, Kyoto, Japan, 2) Miz Company Limited, Kamakura, Japan

Hidenao Kayawake1, T. F. Chen-Yoshikaw1, M. Saito1, S. Hirano2, R. Kurokawa2, H. Yamagishi1, R. Okabe1, F. Gochi1, J. Tokuno1, S. Ueda1, Y. Yokoyama1, M. Ikeda1, H. Oda1, Y. Yamada1, Y. Yutaka1, D. Nakajima1, A. Ohsumi1, M. Hamaji1, H. Date1

Background

Molecular hydrogen (H_2) protects the effects of ischemia-reperfusion (I/R) injury in various organs.

Antioxidative effect
Anti-inflammatory effect
Anti-apoptotic effect

However, most of the reports are on inhalation of H_2.

Background

Our group has previously reported...

- the protective effects of H_2-rich solution on lung I/R injury in a rat left hilar clamp model

- the protective effects of H_2-rich preservation solution on lung preservation in a rat left LTx model

Saito M, et al. ISHLT 2018 Annual Meeting

Background

Advantages of H_2-rich preservation solution

- Easy to transport
- Possible to use both for flushing and immersing
- Safe to use
 - Since H_2 gas has flammable and explosive properties
- Efficient to deliver

H_2 molecular hydrogen, I/R: ischemia-reperfusion, LTx: lung transplantation

Methods - Study design

Donor canine

Graft preservation (23 hours, 4°C)

Retrieval of lung grafts

Recipient Canine

Left LTx (1 hour)

Reperfusion (Total 4 hours)

H_2 group: hydrogen group

CON group: control group

Clamp of right main PA

Sacrifice

45 minutes after reperfusion

H_2 molecular hydrogen, LTx: lung transplantation, PA: pulmonary artery

Conclusion

Our results indicated that hydrogen-rich preservation solution attenuated I/R injury in a canine left LTx model.

Correspondence: hdky0214@kuhp.Kyoto-u.ac.jp (H. Kayawake)